Sean $\mathbb{F}$ un campo y $n$ entero positivo. Para un elemento $f\in\mathbb{F}[x_1, \ldots,x_n]$, en el anillo de polinomios con coeficientes en $\mathbb{F}$, consideramos $$D(f):=\{(a_1,a_2,\ldots, a_n)\in \mathbb{F}^n\;|\; f(a_1,a_2,\ldots, a_n)\neq 0\},$$ llamados conjuntos abiertos distinguidos . Afirmación : la colección $\mathcal{D}:=\{D(f)\;|\; f\in\mathbb{F}[x_1, \ldots,x_n]\}$ es una base para una topología en $\mathbb{F}^n$. Solución. Para el polinomio constante $1=1+0x_1+\cdots 0x_n$ se tiene que $D(1)=\mathbb{F}^n$. Por otro lado, para $D(f),D(g)\in \mathcal{D}$ tomamos el producto $f\cdot g$ de los polinomios correspondientes y notamos que $D(f)\cap D(g)=D(f\cdot g)$; asi que $D(f)\cap D(g)\in \mathcal{D}$. $\blacksquare$ La topología obtenida de este modo es llamada la topología (por abiertos) de Zariski ; algunos autores prefieren definir dicha topología considerando los cerrados $$V(f):=\mathbb{F}^n\backslash D(f)=\{(a_1,a_2,\ldots, a_n)\in \mathbb{F}^n\;|\; f...