1. Introducción Con respecto al estudio del movimiento de caída libre, el filósofo griego Aristóteles (384-322 aC) asumió que los objetos más pesados caían más rápido que los más ligeros. Esta suposición se mantuvo durante casi 2000 años hasta que, a finales del siglo XVI, el matemático italiano Galileo Galilei (1564-1642) demostró que en realidad todos los objetos caen al mismo tiempo sin importar el peso de estos. Corrientes de pensamiento con respecto al movimiento de caída libre Aristoteliana Galileana Galileo estaba convencido de que en un espacio completamente libre de aire, dos cuerpos en caída libre cubrían distancias iguales en tiempos iguales sin importar su peso. Esto contradecía radicalmente las nociones aristotélicas acerca de la caída libre. Por supesto que en esa época, era muy difícil medir con precisión el tiempo que tarda un objeto en caer una distancia vertical. Sin embar
1. Introducción El historiador de las matemáticas Morris Kline considera al Cálculo, después de la geometría, como la creación más grande en todas las matemáticas [4, p. 342]. Generalmente se atribuye su invención principalmente a dos matemáticos del siglo XVII, el inglés Isaac Newton (1642-1727) y el alemán Gottfried Wilhelm Leibniz (1646-1716). Sin embargo, esta es una excesiva y absurda simplificación de los hechos. En realidad el Cálculo, tal y como lo conocemos actualmente, es el producto de una larga evolución en la cual ciertamente estos dos personajes desempeñaron un papel decisivo [6]. Leibniz Newton En términos muy generales, el Cálculo llegó para resolver y unificar los problemas de cálculo de áreas y volúmenes, el trazo de tangentes a curvas y la obtención de valores máximos y mínimos, proporcionando una metodología general para la solución de todos estos problemas; también permitió definir el concepto de continuidad y manejar pro
La historia de la teoría de conjuntos es bastante diferente comparada con la historia de la mayoría de las otras áreas de las matemáticas. Para la mayoría de las áreas por lo general se puede rastrear un largo proceso en el que las ideas evolucionan hasta alcanzar un resplandor final de inspiración, a menudo por un número de matemáticos casi simultáneamente, produciendo un descubrimiento de gran importancia. La teoría de conjuntos sin embargo, es bastante diferente. Su creación se debe a una sola persona, Georg Cantor. Antes de adentrarnos en la historia principal del desarrollo de la teoría de Cantor, primero examinamos algunas contribuciones preliminares. Georg Cantor La idea de infinito había sido objeto de una profunda reflexión desde la época de los griegos. Zenón de Elea, alrededor de 450 aC, con sus problemas en el infinito, hizo una importante contribución. En la Edad Media, la discusión del infinito había dado lugar a la comparación de conjuntos infinitos. Por
Comentarios
Publicar un comentario