Nudos en el Toro

En la teoría de nudos, un nudo de toro es un tipo especial de nudo que se encuentra en la superficie de un toro en $\mathbb R^3$. Cada nudo de toro se especifica por un par de números enteros coprimos $p$ y $q$. Un enlace de toro surge si $p$ y $q$ no son coprimos (en cuyo caso el número de componentes es gcd$(p, q)$). Un nudo de toro es trivial si y sólo si $p$ o $q$ es igual a $1$ o $-1$. El ejemplo más simple no trivial es el nudo $(2,3)$-torus, también conocido como nudo de trébol.

El nudo $(p, q)$-torus puede ser dado por la parametrización:
$x=r\cos(p\,\phi )$
$y=r\sin(p\,\phi )$
$z=-\sin(q\,\phi )$
donde $r=\cos(q\,\phi)+2$ y $0<\phi<2\pi$. Esto se encuentra en la superficie del toro dada por $(r-2)^{2} + z^{2} = 1$ (dada en coordenadas cilíndricas).

En el siguiente applet puedes observar diferentes ejemplos del nudo $(p, q)$-torus. Cambia los valores de $p$ y $q$. También puedes rotar la vista 3D haciendo click con el botón derecho del ratón.


Comentarios

Otras entradas

Una historia de la Teoría de Conjuntos

¿Para qué ya NO sirven los logaritmos?

La función de las palomitas (Thomae)