Sobre la infinidad de números primos
Recordemos que un número primo es aquel cuyos únicos divisores son él mismo y el $1$. La existencia de los números primos es de gran importancia ya que el Teorema Fundamental de la Aritmética afirma que todo entero $n>1$ es un primo o es un producto de primos; además, la factorización en producto de primos es única salvo orden de los primos. En la presente nota daremos una prueba topológica de que existe una cantidad infinita de números primos. Para mostrar el resultado repasaremos algunos conceptos y resultados elementales de topología. Preliminares topológicos En una nota anterior hablamos sobre los abiertos de una topología, con lo cual podemos definir: un cerrado es aquel subespacio cuyo complemento es abierto. Algo que no se dijo en esa cómo generar una topología; aquí una forma: dada una topología $\tau$ para $X$ decimos que $\mathcal{B}\subset \tau$ es una base para $\tau$ si todo abierto puede ser expresado como unión de elementos de $\mathcal{B}$. La c...