Transformaciones de Möbius
Las transformaciones de Möbius son funciones racionales complejas de la forma $$f(z)=\frac{az+b}{cz+d}$$ donde $a,b,c$ y $d$ son constantes complejas tales que $ad-bc\neq 0$. Las transformaciones de Möbius reciben su nombre en honor a August Ferdinand Möbius (1790-1868), aunque también se nombran como transformaciones especiales conformes, transformaciones racionales lineales o transformaciones homográficas. August Möbius (1790-1868) Source: Wikipedia Las propiedades matemáticas de las transformaciones de Möbius se estudian en los cursos de variable compleja. Por ejemplo, se sabe que dichas transformaciones son funciones meromórficas (de hecho el grupo de automorfismos meromóficos del plano extendido $\mathbb C_{\infty}$ consiste precisamente de transformaciones de Möbius) y además son funciones conformes en todas partes. También estas transformaciones poseen la siguiente propiedad geométrica: Los arcos de circunferencias son transformados (o mapeados)...