Dos ejercicios de Topología General
1 .- Sea $X=[-1,1]\subset \mathbb{R}$ y consideremos la colección de subconjuntos de $X$ dada por $\tau=\{U\subset X\: |\: 0\notin U\;\; ó\;\; (-1,1)\subset U\}$ Pruebe que $\tau$ es una topología para $X$ y determine todos sus cerrados. Solución . Dado que $0\notin \emptyset$, se sigue que $\emptyset \in \tau$ y como $(-1,1)\subset X$ se tiene que $X\in \tau$. Consideremos ahora una colección $\{U_i\}_{i\in I}$ de elementos de $\tau$. (i) Si $0\notin U_i, \forall i$, entonces $0\notin \bigcup_{i\in I}U_i$ y la unión es elemento de $\tau$. (ii) Por otro lado, si existe $j$ tal que $(-1,1)\subset U_j$, se tiene que $(-1,1) \subset \bigcup_{i\in I}U_i$ y también la unión es elemento de $\tau$. Tomemos aho...