Entradas

Mostrando las entradas de noviembre, 2015

El Problema de Nielsen (parte II)

Imagen
Recordemos que el Problema de Nielsen consiste en determinar qué subgrupos del grupo modular $\Gamma (S_g)$ pueden ser representados en $Top(S_g)$. Por ejemplo, dado $H\subset \Gamma (S_g)$ con $H=<h>$ cíclico infinito, ¿es cierto que $h$ es de orden infinito?



Hagamos $g=0$ y consideremos el grupo modular $\Gamma(S^2)$. En 1926 H. Kneser publica el resultado que afirma que todo homeomorfismo de $S^2$ que preserva orientación es isotópico a una rotación; el análogo diferenciable se debe a S. Smale. En el caso de considerar el grupo modular $\Gamma^{\pm}(S^2)$ de todos los homeomorfismos (los que preservan orientación y los que no) se tiene que $\Gamma^{\pm}(S^2)$ es isomorfo a $\mathbb{Z}_2=\{1,a\}$, donde $1$ es la identidad y $a$ es la función antipodal $x\mapsto -x$. Así, todo el grupo $\Gamma^{\pm}(S^2)$ queda representado por las funciones identidad y antipodal.






Tomemos el caso $g=1$. Recordemos el isomorfismo $\Gamma(S_g)\cong Out \pi_1(S_g,p)$ y notemos que como $\pi_1(T^2…

Water Knots (Nudos en el agua)

Imagen
Además de la importancia que tienen en la vida cotidiana, los nudos son objetos que pueden ser estudiados desde un punto de vista matemático y resultan de gran importancia en la Topología de Bajas Dimensiones.

Definiciones y el grupo de nudo

Un nudo es un subconjunto $K$ del espacio $\mathbb{R}^3$ homeomorfo a la circunferencia unitaria $S^1$. Notemos que del homeomorfismo de la definición se sigue que un nudo $K$ es una curva cerrada (termina en el mismo punto donde inició) y que no se intersecta a sí misma. Abajo un ejemplo de nudo, el nudo trébol (en una versión cúbica).





Así como con otros objetos en las matemáticas es importante definir una relación de equivalencia entre nudos: dos nudos $K_1,K_2$ son llamados equivalentes si existe un homeomorfismo $h:\mathbb{R}^3\to \mathbb{R}^3$ tal que $h(K_1)=K_2$; es decir, dos nudos son equivalentes si uno puede deformarse continuamente en el otro. En la figura de abajo se muestran nudos equivalentes



Un primer problema que surge es determina…

Otras entradas

Galileo Galilei y su ley de caída libre

Una historia de la Teoría de Conjuntos

El triángulo y la Recta de Euler